
1

ENG SC757 - Advanced Microprocessor Design

Babak Kia
Adjunct Professor
Boston University
College of Engineering
Email: bkia -at- bu.edu

From Source to Execution
Assembling, Compiling, Debugging,

and Programming

Topics Discussed
Assembler
Compiler
Object Files
Extended Linker Format (ELF)
Debuggers & Debugging Techniques
Simulators
Emulators
Programmers
Logic Analyzers
Digital Storage Scope

From Source to Execution
The purpose of Assemblers & Compilers are to
translate code into machine executable binary.

C/C++ Pascal Assembly

C/C++
Compiler

Pascal
Compiler Assembler

Object File Object File Object File

Linker Executable Debug &
Program

2

Assembler
Assembler takes instructions written in
assembly language, and translates them into
the binary code which a target processor can
then execute
Assemblers are relatively simple, there is
limited macro support, and no optimization
Advantages
• Just about as optimized as it gets

Disadvantages
• You can’t simply reassemble code for a new target
• It can get very complex very quickly

Compiler
The role of a Compiler, much like an
Assembler, is to translate source code to run
on a target processor
Advantages
• Code is usable across different targets. It is a

simple matter of recompiling
• The complexity of writing assembly code is greatly

reduced
• Good software techniques can be employed with a

high level language such as C or C++
Disadvantages
• Generated object code is generally larger and

executes slower than an assembly version

Assembler versus Compiler
Ultimately, assembly language is as close
you can get to running efficient code on
hardware
However, time-to-market pressure, good
software design techniques, code re-use, and
optimizing compilers restrict usage of
assembly code
Although for an 8-bit processor you primarily
use assembly code, for a 32-bit processor,
assembly is used mainly to tune code
This is achieved by rewriting some of the key
loops in assembly

3

Compiler objectives

Compilers usually optimize for one of the
following objectives
• Speed

• Execution speed of a program can be a critical factor
in some applications

• Produces larger code, and takes longer to compile
• Size

• Size too can be a critical factor, specially for systems
with limited resources

• Debug information
• Debug info is of great use during debug, but of little

value for a final production image

Cross Compiling
It makes little sense to run the compiler on
the target processor
• A Host PC is usually more versatile and powerful

than a target Processor
• Disadvantage is that you now need a mechanism

for loading the object code onto the target
processor

• You also need a means of debugging the code
Cross-Compiling is the process of compiling
and linking code on a Host PC, in order to
create an object file which will run on a target
Processor.

Compiling on PC versus an
Embedded processor

Preparing code on a PC is relatively simple
• The Compiler already knows a lot of information

about your target and hides that information from
you.

Preparing code for an Embedded System is
more involved
• The compiler needs to be configured with specific

information about the target system, such as
available memory, Stack address, etc.

4

Object Files
An object code file contains
executable code, but isn’t
executable by itself
Object code can be thought
of as a very large data
structure
Usually falls into one of two
standard formats:
• COFF – Common Object File

Format
• ELF – Extended Linker

Format

C/C++ Pascal Assembly

C/C++
Compiler

Pascal
Compiler Assembler

Object File Object File Object File

Linker
Linked
Object

File

Binary
(S19 or

bin)

What goes into an Object File

An object file contains the following
information:
• Header Information – Information about the file

such as size of code, date, etc.
• Object Code – Binary instructions created by the

compiler or the assembler
• Relocation Information – Used by the linker to

change addresses in the object code
• Symbols – Global symbols defined for this module
• Debug Information – Links to the source code, line

number information, C data structures, etc.

Linker
It is the linker’s job to take one or more object files and
combine them together to form a single file
The linker merges the code and the data sections of
the object files together with resolving the symbol
information in order to create a final and relocatable
object file
On a PC this would be the final step prior to running
the created executable. The Operating System is
aware of where to load your program.
On an embedded system however, a final step is
required which assigns absolute memory addresses to
the code. For instance, the linker needs to know
where stack starts, where heap starts, etc.
This step may be an inherent part of the Linker, or a
separate script file called the Linker Script file (ld).

5

C Runtime (crt.0)
A PC is adept at preparing memory, setting up stack
and other setup procedures prior to loading code
On an Embedded System, we need to provide a start-
up code
This is usually (and automatically) provided in a file
called the C runtime or crt0 file
The crt0 file is linked and therefore automatically
performs the following tasks
• Copies initialized data from ROM to RAM
• Zeros out the un-initialized data in RAM
• Initializes the Stack Pointer
• Initializes the Heap
• Calls main()

Extended Linker Format (ELF)

An ELF file can be one of three types
• Executable – Can be loaded into memory and

executed
• Relocatable – Prior to loading, the location

addresses need to be processed
• Shared Object – Or shared library, contains the

runnable code, and symbol information for the
linker

Extended Linker Format (ELF)
ELF files can have many
sections, but they have three
major sections
.text section – contains all of
the code segments
.data section – contains
initialized variables and their
values
.bss section – contains
uninitialized global variables
Other sections are a symbol
table, and links to the actual
source code

6

Extended Linker Format (ELF)
PROGBITS are program
content that contain debug
info, code, and data
NOBITS are like PROGBITS,
but no space is allocated
since it is used for BSS
section during load time
STRTAB is the string table
SYMTAB is the symbol table

Debugging
Compiling the code and getting it into a binary file is
only the first step of creating a final product
Once you have a binary code, you will need a means of
loading it onto the target hardware and debugging it
Traditionally an Embedded System designer’s debug
options have been limited because chip manufacturers
paid little attention to the value of on-chip debug
resources
Today however, most modern processors have a
debug port, either in the form of a Background Debug
Mode (BDM) port, or a JTAG port, which allow external
access to the chip’s internal registers and memory

Debugger – P&E’s ICDHCS08

7

Debugger - P&E’s ICDCFZ

Debugger Characteristics
Good debuggers share common characteristics:
• Show internal CPU register and resources
• Show and allow modification of memory content
• Allow the developer to set source breakpoints
• Enable task and thread aware breakpoints
• Allow the developer to set memory access breakpoints
• Provide a stack trace
• Provide an execution trace
• Evaluate and modify variables and complex data

structures easily
• Show high-level source code as well as low level

assembly
• Seamlessly take care of cache and interrupts

Debugging Techniques

In spite of very complex and expensive
debugger environments, some of the MOST
effective debugging techniques come for
free!
Very useful, though unconventional debug
techniques include
• Using (toggling) an LED light to indicate execution

milestones
• Using printf statements to provide code insight

8

Debugger Hardware
Debuggers are simply software that run on a host PC
To actually debug target hardware, you will need a
debug interface
Debug interfaces come in many shapes and sizes
• As simple as a serial port connection to a host PC, which

interacts with a “Monitor ROM” resident on target
hardware

• A Parallel port or USB cable
• A feature rich development and debug interface capable

of stand-alone operation (for programming)
• Ultimately they all “speak” the target processor’s debug

language, be it BDM or otherwise, and provide that
information back to the host PC

Debugging Pitfalls

Interrupts
• Interrupts are always a source of bemusement to

the person who is debugging a system
• Their inherently asynchronous nature makes

debugging a system which has interrupts turned
on very difficult

• Turning interrupts off certainly helps, but what if
you are trying to debug an interrupt itself?

• This is where more complex debug equipment
such as emulators come to the rescue

Debugging Pitfalls
Cache
• Cache is of great value in microprocessor systems

because it stores local copies of data on a high speed,
low latency memory

• However this very mechanism hampers debugging
because modified data is not always updated on main
memory

• One solution is to simply turn cache off
• Another solution is to configure the system cache for a

write-through operation (as opposed to other
configurations such as write-back)

• A third option, not usually used, is to invalidate cache
and force it to write back modified data, however, this
takes time

9

Emulators
Emulators are glorified (albeit very useful) debuggers
An emulator actually takes the place of a target
processor, and is itself an embedded system,
complete with the target processor, ROM, RAM, etc.
They provide the designer with tools that simple
debugger environments cannot, such as
• Bus-state analyzers
• Timing information
• Real-time execution trace
• Complex breakpoint capabilities
• Multiprocessor support

Ultimately, they are the most powerful
tool in the designer’s debug arsenal

Simulators
Simulators are also a great tool for debugging target
hardware, even though it is purely software which runs
on a host PC
A simulator is useful particularly in the beginning
phase of a development cycle, when target hardware,
or even the silicon are not available
It is an indispensable tool for developing algorithms
and verifying the logical functionality of programs

Programmers
Ultimately, once the
development and debug of a
system is done, the code
needs to be programmed into
the target board
Programmers come in many
shapes and sizes, ranging
from $100 - $100,000
Perhaps the simplest way of
programming the target is via
an in-circuit programmer,
using the same debug port to
program a non-volatile
memory such as flash

10

Logic Analyzers
Logic Analyzers are also an indispensable tool for
debugging hardware.
They are particularly useful in identifying and
debugging the interaction between the target
processor and other chipsets onboard
Since logic analyzers do not have access to a
microprocessor’s internal resources, their primary
utility lies in debugging external events
However, the drawback is that it is intended almost
exclusively for debugging digital hardware

Digital Storage Scopes

Digital Storage Scopes, and oscilloscopes
are the final defense when it comes to
debugging hardware issues relating to
• Timing
• Signal integrity & noise issues

The drawback to Storage Scopes and
oscilloscopes are that they have limited
channels and can be very expensive

11

Summary

Assemble / Compile

Link / Object File

Debug

Program

Simulate

done

Portions of this power point presentation may have been taken from relevant users and technical manuals. Original content Copyright © 2005 – Babak Kia

